

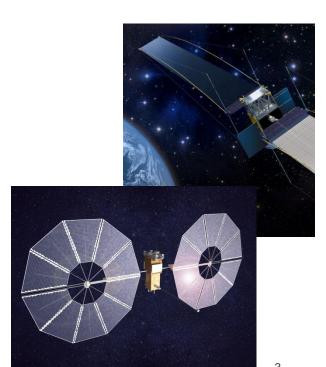
Structural Monitoring to Minimize Inspections

Michael Grygier
NASA/Johnson Space Center

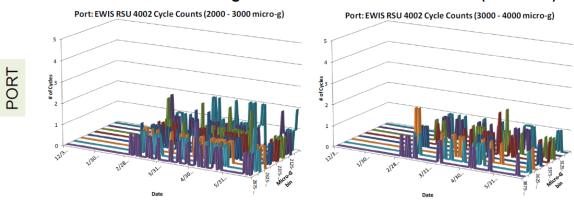
NASA In Space Inspection Workshop (ISIW) 2014 15-16 July 2014 NASA Johnson Space Center, Houston TX

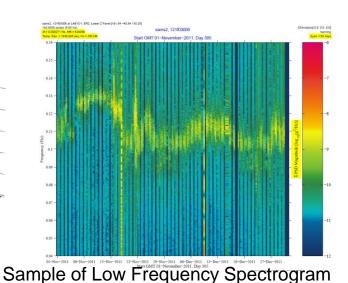
Use of Current ISS Instrumentation Systems

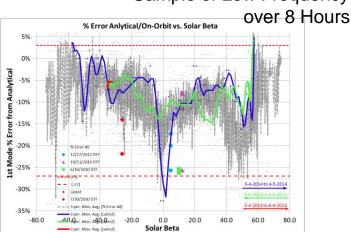
- ISS structures were certified for a 15-year life.
- Zarya launched November 1998, over 15 years ago.
- Structural life extension analysis has been performed to certify that ISS structures are good through 2020 and beyond.
 - Analysis has taken into account load cycles calculated from actual events vs the cycles assumed during design.
 - Re-constructing actual load cycles is performed using telemetry and data from the ISS.
 - Data/Sensor systems have been invaluable to allow proper loads reconstructions, especially for unexpected high-loading events.
 - Data/Sensor systems have been utilized to provide trending information for rotating joints, allowing for longer inspection/lube intervals.
- ◆ Future space vehicles should incorporate smarter, smaller, and power efficient sensor systems:
 - Monitor structural dynamics and rotating joints, perform onboard processing, alert crew real-time to any high loading events, store only the data ground needs to evaluate structure.



Solar Array Mast Structural Health Monitoring


- MMOD shielding is designed into the ISS pressurized modules, but not for the truss and appendages.
 - US Photo-Voltaic (USPV) masts are designed to be 2fault tolerant, but inspections need to be performed to verify the 1st fault hasn't occurred.
 - Current inspection requires crew time to take detailed photographs of mast on a periodic basis.
- ISS USPV MMOD impact monitoring
 - Need a system that could be deployed robotically or via EVA that could monitor for MMOD impacts.
 - This could trigger a detailed inspection.
- ◆ Future vehicles could incorporate this type of system in the design of the solar array support structure itself.
 - This could trigger a detailed inspection.
 - Monitor dynamic strain and accelerations to assess loading history and alert crew if arrays are experiencing high loads.
 - Monitor for MMOD impacts.
 - Structural health monitoring system would also include a means of locating and assessing damage.




Break in EWIS PORT 4002 High Transients from GMT 146-165 (5/26-6/14)

Sample of Cycle Count Data over Months

Sample of High Frequency Spectrogram over 10's of seconds

1st Global Mode Frequency tracked over Months (filtered .05-.15 Hz, largest amplitude per 39 second psd)